3.1.11 \(\int (c e+d e x) (a+b \tanh ^{-1}(c+d x)) \, dx\) [11]

Optimal. Leaf size=48 \[ \frac {b e x}{2}-\frac {b e \tanh ^{-1}(c+d x)}{2 d}+\frac {e (c+d x)^2 \left (a+b \tanh ^{-1}(c+d x)\right )}{2 d} \]

[Out]

1/2*b*x*e-1/2*b*e*arctanh(d*x+c)/d+1/2*e*(d*x+c)^2*(a+b*arctanh(d*x+c))/d

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {6242, 12, 6037, 327, 212} \begin {gather*} \frac {e (c+d x)^2 \left (a+b \tanh ^{-1}(c+d x)\right )}{2 d}-\frac {b e \tanh ^{-1}(c+d x)}{2 d}+\frac {b e x}{2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)*(a + b*ArcTanh[c + d*x]),x]

[Out]

(b*e*x)/2 - (b*e*ArcTanh[c + d*x])/(2*d) + (e*(c + d*x)^2*(a + b*ArcTanh[c + d*x]))/(2*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 6037

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcTanh[c*
x^n])^p/(m + 1)), x] - Dist[b*c*n*(p/(m + 1)), Int[x^(m + n)*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))
), x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -1
]

Rule 6242

Int[((a_.) + ArcTanh[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[
Int[(f*(x/d))^m*(a + b*ArcTanh[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f,
 0] && IGtQ[p, 0]

Rubi steps

\begin {align*} \int (c e+d e x) \left (a+b \tanh ^{-1}(c+d x)\right ) \, dx &=\frac {\text {Subst}\left (\int e x \left (a+b \tanh ^{-1}(x)\right ) \, dx,x,c+d x\right )}{d}\\ &=\frac {e \text {Subst}\left (\int x \left (a+b \tanh ^{-1}(x)\right ) \, dx,x,c+d x\right )}{d}\\ &=\frac {e (c+d x)^2 \left (a+b \tanh ^{-1}(c+d x)\right )}{2 d}-\frac {(b e) \text {Subst}\left (\int \frac {x^2}{1-x^2} \, dx,x,c+d x\right )}{2 d}\\ &=\frac {b e x}{2}+\frac {e (c+d x)^2 \left (a+b \tanh ^{-1}(c+d x)\right )}{2 d}-\frac {(b e) \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,c+d x\right )}{2 d}\\ &=\frac {b e x}{2}-\frac {b e \tanh ^{-1}(c+d x)}{2 d}+\frac {e (c+d x)^2 \left (a+b \tanh ^{-1}(c+d x)\right )}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 77, normalized size = 1.60 \begin {gather*} \frac {e \left (2 b c+2 a c^2+2 b d x+4 a c d x+2 a d^2 x^2+2 b (c+d x)^2 \tanh ^{-1}(c+d x)+b \log (1-c-d x)-b \log (1+c+d x)\right )}{4 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)*(a + b*ArcTanh[c + d*x]),x]

[Out]

(e*(2*b*c + 2*a*c^2 + 2*b*d*x + 4*a*c*d*x + 2*a*d^2*x^2 + 2*b*(c + d*x)^2*ArcTanh[c + d*x] + b*Log[1 - c - d*x
] - b*Log[1 + c + d*x]))/(4*d)

________________________________________________________________________________________

Maple [A]
time = 0.04, size = 65, normalized size = 1.35

method result size
derivativedivides \(\frac {\frac {e \left (d x +c \right )^{2} a}{2}+\frac {b e \left (d x +c \right )^{2} \arctanh \left (d x +c \right )}{2}+\frac {e \left (d x +c \right ) b}{2}+\frac {b e \ln \left (d x +c -1\right )}{4}-\frac {b e \ln \left (d x +c +1\right )}{4}}{d}\) \(65\)
default \(\frac {\frac {e \left (d x +c \right )^{2} a}{2}+\frac {b e \left (d x +c \right )^{2} \arctanh \left (d x +c \right )}{2}+\frac {e \left (d x +c \right ) b}{2}+\frac {b e \ln \left (d x +c -1\right )}{4}-\frac {b e \ln \left (d x +c +1\right )}{4}}{d}\) \(65\)
risch \(\frac {e b x \left (d x +2 c \right ) \ln \left (d x +c +1\right )}{4}-\frac {e d b \,x^{2} \ln \left (-d x -c +1\right )}{4}-\frac {e b x \ln \left (-d x -c +1\right ) c}{2}+\frac {a d e \,x^{2}}{2}+\frac {e \ln \left (-d x -c -1\right ) b \,c^{2}}{4 d}-\frac {e \ln \left (d x +c -1\right ) b \,c^{2}}{4 d}+a c e x +\frac {b e x}{2}-\frac {e b \ln \left (-d x -c -1\right )}{4 d}+\frac {e b \ln \left (d x +c -1\right )}{4 d}\) \(141\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)*(a+b*arctanh(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(1/2*e*(d*x+c)^2*a+1/2*b*e*(d*x+c)^2*arctanh(d*x+c)+1/2*e*(d*x+c)*b+1/4*b*e*ln(d*x+c-1)-1/4*b*e*ln(d*x+c+1
))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 117 vs. \(2 (45) = 90\).
time = 0.27, size = 117, normalized size = 2.44 \begin {gather*} \frac {1}{2} \, a d x^{2} e + \frac {1}{4} \, {\left (2 \, x^{2} \operatorname {artanh}\left (d x + c\right ) + d {\left (\frac {2 \, x}{d^{2}} - \frac {{\left (c^{2} + 2 \, c + 1\right )} \log \left (d x + c + 1\right )}{d^{3}} + \frac {{\left (c^{2} - 2 \, c + 1\right )} \log \left (d x + c - 1\right )}{d^{3}}\right )}\right )} b d e + a c x e + \frac {{\left (2 \, {\left (d x + c\right )} \operatorname {artanh}\left (d x + c\right ) + \log \left (-{\left (d x + c\right )}^{2} + 1\right )\right )} b c e}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*arctanh(d*x+c)),x, algorithm="maxima")

[Out]

1/2*a*d*x^2*e + 1/4*(2*x^2*arctanh(d*x + c) + d*(2*x/d^2 - (c^2 + 2*c + 1)*log(d*x + c + 1)/d^3 + (c^2 - 2*c +
 1)*log(d*x + c - 1)/d^3))*b*d*e + a*c*x*e + 1/2*(2*(d*x + c)*arctanh(d*x + c) + log(-(d*x + c)^2 + 1))*b*c*e/
d

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 121 vs. \(2 (45) = 90\).
time = 0.34, size = 121, normalized size = 2.52 \begin {gather*} \frac {2 \, {\left (a d^{2} x^{2} + {\left (2 \, a c + b\right )} d x\right )} \cosh \left (1\right ) + {\left ({\left (b d^{2} x^{2} + 2 \, b c d x + b c^{2} - b\right )} \cosh \left (1\right ) + {\left (b d^{2} x^{2} + 2 \, b c d x + b c^{2} - b\right )} \sinh \left (1\right )\right )} \log \left (-\frac {d x + c + 1}{d x + c - 1}\right ) + 2 \, {\left (a d^{2} x^{2} + {\left (2 \, a c + b\right )} d x\right )} \sinh \left (1\right )}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*arctanh(d*x+c)),x, algorithm="fricas")

[Out]

1/4*(2*(a*d^2*x^2 + (2*a*c + b)*d*x)*cosh(1) + ((b*d^2*x^2 + 2*b*c*d*x + b*c^2 - b)*cosh(1) + (b*d^2*x^2 + 2*b
*c*d*x + b*c^2 - b)*sinh(1))*log(-(d*x + c + 1)/(d*x + c - 1)) + 2*(a*d^2*x^2 + (2*a*c + b)*d*x)*sinh(1))/d

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 95 vs. \(2 (41) = 82\).
time = 0.68, size = 95, normalized size = 1.98 \begin {gather*} \begin {cases} a c e x + \frac {a d e x^{2}}{2} + \frac {b c^{2} e \operatorname {atanh}{\left (c + d x \right )}}{2 d} + b c e x \operatorname {atanh}{\left (c + d x \right )} + \frac {b d e x^{2} \operatorname {atanh}{\left (c + d x \right )}}{2} + \frac {b e x}{2} - \frac {b e \operatorname {atanh}{\left (c + d x \right )}}{2 d} & \text {for}\: d \neq 0 \\c e x \left (a + b \operatorname {atanh}{\left (c \right )}\right ) & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*atanh(d*x+c)),x)

[Out]

Piecewise((a*c*e*x + a*d*e*x**2/2 + b*c**2*e*atanh(c + d*x)/(2*d) + b*c*e*x*atanh(c + d*x) + b*d*e*x**2*atanh(
c + d*x)/2 + b*e*x/2 - b*e*atanh(c + d*x)/(2*d), Ne(d, 0)), (c*e*x*(a + b*atanh(c)), True))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 180 vs. \(2 (42) = 84\).
time = 0.42, size = 180, normalized size = 3.75 \begin {gather*} \frac {1}{2} \, {\left ({\left (c + 1\right )} d - {\left (c - 1\right )} d\right )} {\left (\frac {{\left (d x + c + 1\right )} b e \log \left (-\frac {d x + c + 1}{d x + c - 1}\right )}{{\left (\frac {{\left (d x + c + 1\right )}^{2} d^{2}}{{\left (d x + c - 1\right )}^{2}} - \frac {2 \, {\left (d x + c + 1\right )} d^{2}}{d x + c - 1} + d^{2}\right )} {\left (d x + c - 1\right )}} + \frac {\frac {2 \, {\left (d x + c + 1\right )} a e}{d x + c - 1} + \frac {{\left (d x + c + 1\right )} b e}{d x + c - 1} - b e}{\frac {{\left (d x + c + 1\right )}^{2} d^{2}}{{\left (d x + c - 1\right )}^{2}} - \frac {2 \, {\left (d x + c + 1\right )} d^{2}}{d x + c - 1} + d^{2}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)*(a+b*arctanh(d*x+c)),x, algorithm="giac")

[Out]

1/2*((c + 1)*d - (c - 1)*d)*((d*x + c + 1)*b*e*log(-(d*x + c + 1)/(d*x + c - 1))/(((d*x + c + 1)^2*d^2/(d*x +
c - 1)^2 - 2*(d*x + c + 1)*d^2/(d*x + c - 1) + d^2)*(d*x + c - 1)) + (2*(d*x + c + 1)*a*e/(d*x + c - 1) + (d*x
 + c + 1)*b*e/(d*x + c - 1) - b*e)/((d*x + c + 1)^2*d^2/(d*x + c - 1)^2 - 2*(d*x + c + 1)*d^2/(d*x + c - 1) +
d^2))

________________________________________________________________________________________

Mupad [B]
time = 1.84, size = 73, normalized size = 1.52 \begin {gather*} \frac {b\,e\,x}{2}+a\,c\,e\,x-\frac {b\,e\,\mathrm {atanh}\left (c+d\,x\right )}{2\,d}+\frac {a\,d\,e\,x^2}{2}+\frac {b\,c^2\,e\,\mathrm {atanh}\left (c+d\,x\right )}{2\,d}+b\,c\,e\,x\,\mathrm {atanh}\left (c+d\,x\right )+\frac {b\,d\,e\,x^2\,\mathrm {atanh}\left (c+d\,x\right )}{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)*(a + b*atanh(c + d*x)),x)

[Out]

(b*e*x)/2 + a*c*e*x - (b*e*atanh(c + d*x))/(2*d) + (a*d*e*x^2)/2 + (b*c^2*e*atanh(c + d*x))/(2*d) + b*c*e*x*at
anh(c + d*x) + (b*d*e*x^2*atanh(c + d*x))/2

________________________________________________________________________________________